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1 Introduction 
 
1.1 Introduction 
 
OMNeT++ [1] is an open source simulation package. Development started in 1992, and since then 
different contributors have written several of models for it. Some of these models simulate simple 
queuing models, others simulate more realistic protocols such as TCP/IP. OMNeT++ is used by 
universities and companies like Lucent and Siemens.  
 
One of these existing models is the IPSuite package. This package includes support for IPv4, TCP, 
UDP and QoS models. TCP is one of the most used protocols today because of the popularity of the 
Internet. It is thus useful to explore the behaviour of this protocol further, by making use of 
simulations. This simulation can be done in OMNeT++ , but is this TCP model really useful? 
  
1.2 Problem Description 
 
The first purpose of this assignment is to get insight in OMNeT++. After this, the capabilities and 
shortcomings of the TCP model should be shown, by experimenting with the model.  
 
1.3 Approach 
 
First, the OMNeT++ package will be studied. After that, some simple simulations will be run. The 
M/M/1 model will be studied and the simulation for this will be executed in OMNeT++. The outcomes 
from these tests will be compared with the published results and theoretical outcomes.  
 
Then the more extended models will be looked into. In order to understand the TCP model, TCP/IP is 
studied first. Then several experiments will be done with this model: comparison with TCP Friendly 
formula and performance issues with asymmetric connections. All this will be described in this report. 
 
1.4 Outline  
 
The rest of this report is structured as follows: first, a description of the OMNeT++ package is given. 
This description includes the simulation of a simple queuing model, and a comparison with the 
simulation outcomes and the theoretic results. In chapter 3, a description of the TCP protocol is given, 
including an overview of the different features. In chapter 4, we look at the TCP implementation of the 
IPSuite package for OMNeT++. The changes made to this implementation are also listed there. This 
model is used in chapter 5, in which the outcomes from several simulations are described. In the last 
chapter, a conclusion is given. 
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2 OMNeT++ 
 
2.1 What is OMNeT++ 
 
2.1.1 History 
 
OMNeT++  is a discrete event simulator in development since 1992. Its primary use is to simulate 
communication networks and other distributed systems. It runs on both Unix and Windows. Other 
similar programs are the widely used ns-2 [2], which has extensive support for TCP, and OPNET [3]. 
 
OMNeT++ started with a programming assignment at the Technical University of Budapest 
(Hungary), to which two students applied. One of them, András Varga, still is the maintainer of this 
open source simulation package. During the years several people contributed to OMNeT++, among 
which several students from the Technical University of Delft (The Netherlands) and Budapest. 
Milestones in the development are the first public release in 1997 and the added animation 
functionality in 1998, which made the package even more usable for education. 
 
In 2000 several people at the University of Karlsruhe created the TCP model for OMNeT++.  
 
When working on this report, version 2.3 of OMNeT++ came out. This version included several bug 
fixes and important changes and additions to the manual. The website also had a major update.  A beta 
version of version 3.0 is now also available. All simulations in this report were done using version 
2.3b2 of OMNeT++. 
 
2.1.2 NED  
 
A simulation in OMNeT++ is written in two different languages, NED and C++. These two languages 
separate the design of a topology and the implementation of the modules that exist in this topology.  
 
The NED (NEtwork Description) language is used to describe the layout (topology) of the simulation.  
 

 
Figure 2-1: Visual network module layout 

As you can see in Figure 2-1, each simple module described by the NED language can also be used in 
a large compound module, which is also described in the NED language. One simple module can for 
example be a TCP implementation, the other one an Ethernet implementation, and together they can 
form an Internet host (the compound module).  
 
There are three distinctive elements that can be described in a NED file:  
 
- Module definitions. In these blocks you can describe simple and compound modules and set 

parameters of these modules. Also, you can define gates that connect the modules.  
- Channel definitions. Describe channels (links) that connect modules.  
- Network definitions. To get the whole simulation running, you’ll have to describe which module is 

the top level module for the network you wish to simulate. This top level module is an instance of 
the system module.  
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In Figure 2-2 the network specification in a .NED file is given for the simulation used in chapter 5.1. 
There are three simple modules in this simulation. One is of the type ‘ClientNode’, the other one is a 
‘ServerNode’ and the last one, Switch, connects these first two. The modules have several parameters 
and are connected using channels ‘Downstream’ and ‘Upstream”. The switch has two inputs and two 
outputs, which connect to the Client- and ServerNode. Together they form the network ‘tcpclservnet’. 
The ‘display’ tags were removed from this example; they only describe the way the modules are 
placed in the visual representation of the simulation. 
 
 
import   
    "TCPClientNode",  
    "TCPServerNode",  
    "switch";  
  
module AsymClientServer  
    submodules:  
        client1: TCPClientNode;  
            parameters:  
                // TCP parameters 
                local_addr = (10 << 24) + 2,  
                server_addr = (10 << 24) + 1,  
                // network parameters 
                numOfPorts = 1,  
                routingFile = "client1.irt",  
                numOfProcessors = 1;  
            gatesizes:  
                in[1],  
                out[1];  
        server1: TCPServerNode;  
            parameters:  
                // TCP parameters 
                local_addr = (10 << 24) + 1,  
                // network parameters 
                numOfPorts = 1,  
                routingFile = "server1.irt",  
                numOfProcessors = 1;  
            gatesizes:  
                in[1],  
                out[1];  
        switch: Switch; 
            gatesizes: 
                in[2] 
                out[2]; 
    connections nocheck:  
        server1.out[0] --> switch.in[0]; 
        switch.out[0] --> server1.in[0];  
        client1.out[0] --> Upstream --> switch.in[1];  
 switch.out[1] --> Downstream --> client1.in[0]       
endmodule  
 
channel Upstream  
    datarate 1000000000; // 1 gigabit 
    delay 0.03; 
endchannel  
 
channel Downstream 
    datarate 1000000000; // 1 gigabit  
    delay 0.03; 
endchannel  
 
network tcpclservnet : AsymClientServer  
endnetwork 

Import several other .NED files. The simple 
modules used are defined there. 
 
 
Simple Module name 
Define submodules 
 
Define module #1 
Parameters of this module 
 
 
 
 
IP routing table  
 
Gates (input/output) 
 
 
 
Define module #2 
Parameters of this module 
 
 
 
 
 
 
Gates (input/output) 
 
 
Define module #3 
 
The switch has multiple in- and outputs. 
 
Define connections 
 
 
 
 
 
Channel definition, Upstream 
Define channel properties, throughput and delay 
 
 
 
Channel definition, Downstream 
Define channel properties, throughput and delay 
 
 
 
Define the network tcpclservnet, instance of 
module AsymClientServer 

Figure 2-2: NED language example 
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2.1.3 Module implementation in C++  
 
The implementation of the modules defined in the NED language is done in C++. You can use the 
OMNeT++ simulation library, with which you can simulate any kind of behaviour in your models. 
This library class includes mechanisms to schedule and cancel events, gather statistical data and 
produce data that can be inspected (plotted) using the graphical tool ‘Plove’, which is also included in 
the package.  
 
2.1.4 Running a simulation 
 
A simulation in OMNeT++ can be run in two different ways: visual and text-only. The visual 
simulations are shown in the following graphics. This way of running the simulation is particularly 
useful when first running the simulation, or to get acquainted with the protocols or networks the 
program simulates. It shows all the messages that are exchanged between the modules in an animation. 
Also, with larger simulations, you can look deeper into each module, to see what messages are 
exchanged internally.  
 
Figure 2-3 shows the main window of the simulation. This is again the simulation used in chapter 5.1. 
This screen includes several controls to run the simulation. Simulations can be run step by step, 
normal (shows every message as an animation), fast (show animations, but faster) and express (which 
doesn’t shows any animation). It is also possible to run the simulation until some point. In this screen, 
you can also see al modules and their parameters. There is also a list of scheduled events. 
 

 
Figure 2-3: OMNeT++ main window 

 
Figure 2-4 to Figure 2-6 show the actual network that is simulated. Figure 2-4 is the top view of the 
network, which has only three components (client1, switch and server1). Figure 2-5 show the internal 
modules of the client1 module. And again, in Figure 2-6, the internal modules of the ‘tcpApp’ are 
shown. 
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Figure 2-4: Top network 

view 

 
Figure 2-5: Internal view client1 

 
Figure 2-6: Interal 

view tcpApp 

In Figure 2-4 you can see a message (the dot) travelling between client1 and the switch. This is the 
way all messages are displayed, as you can also see in the next figure, where it is again a dot. 
 
2.2 Queuing models in OMNeT++ 
 
2.2.1 Queuing models 
 
Queuing models are applicable in many different areas. Queues in supermarkets can be represented 
using such a model, but also queues in computer networks. In OMNeT++ there is a model of a 
particular kind of queue: the M/M/1 queue [4].  
 
Different types of queues can be described using the Kendall notation [5]: 
 
Queue: A/S/m /B /K /SD 
 
In which A is the distribution of the inter arrival times (the time between the arrival of packet j and 
packet j+1 at the queue), B the distribution of service times (the time it takes to process 1 packet) and 
m the number of available servers to process incoming packets. The last three parameters represent the 
amount of buffers (B), the size of the available packet population (K) and the way the incoming 
packets are handled (SD, for example First Come, First Served (FCFS, also known as FIFO) or Last 
Come, First Served (LCFS)) . If the last three parameters are omitted, is it assumed that: the number of 
buffers (B) is infinite, the number of packets in the population is infinite and the packets are handled 
in a first come first served manner.  
 
Using this notation, the M/M/1 queue stands for a queue in which both the inter arrival and service 
times are exponentially distributed, and only one processor is available.  
 
2.2.2 Average response time 
 
By simulating an M/M/1 queue in OMNeT++ it is possible to determine the average response time a 
packet experiences when travelling from a generator to its endpoint (the sink). In this simulation it is 
possible to use the exponential distribution for simulating both service and inter arrival times. In the 
simulation, the inter arrival time is distributed with parameter λ=1/3 (1/3 packets arrive on average per 
time unit) and the service time is distributed with parameter µ=1/2 (on average 1/2 packets per time 
unit are processed).  
 
We are sending 10 000 packets per run. The get an accurate outcome, the simulation is run 50 times 
with a different seed value each time. The different seed values are 10 000 000 values apart and are 
calculated by the seedtool utility that is available with OMNeT++. 
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The size of the FIFO-queue in this simulation is unlimited. When creating this queue in OMNeT++, 
no size limit for this queue is given, so it is assumed that this queue is unlimited. A queue in OMNeT 
is just an object container, which contains the message objects that are generated. 
 
The average response time, as acquired from the simulation, is equal to 6,0414262. It is possible now 
to calculate a confidence interval (CI) for this data. The number of collected response times is large 
enough so that the distribution of response times will approximately follow the normal distribution. 
 
The 95% confidence interval, in which α is equal to 0.05 (5%), can be calculated as follows [5]:  
 

]/,/[ )2/(1)2/(1 nszxnszx αα −− +−  
 
In which x is the average response time, s the standard deviation, n the number of simulation-runs 
(50) and )2/(1 α−z  the probability according to the normal distribution. The 95% CI then is: 
 

]1160822.6,9667702,5[)]50/60,26933564*960.1(6.0414262),50/60,26933564*960.1([6.0414262 =+−
 
This means that there is a 95% probability that in a real queuing situation, with the same parameters, 
the average response time found would lie in this interval. 
 
2.2.3 Theory 
 
A lot of things are known about this M/M/1 queue. Because of this it is possible to calculate the 
average response time without running the simulation, when the process and inter arrival times are 
given. 
 
The mean response time in an M/M/1 queue is given by [5]:  
 

)1/()/1(][ ρµ −=rE   
 
In which µλρ /= is the traffic intensity. In this equation, λ is equal to the number of packets that 
arrive per time unit and µ is equal to the amount of packets that are processed per time unit. When 
filling in the earlier used values for µ and λ, the calculated average response time is:  
 

6)3/1/(2 0.5) / ((1/3)1/()5.0/1(][ ==−=rE  
 
This value is in the confidence interval calculated from the simulation data. We can conclude from this 
that the simulation model is correct when looking at the mean response time.  
 
2.2.4 Job Distribution 
 
OMNeT++ can also produce a graphical presentation of data that is generated by the simulation. The 
next image shows the job distribution: the probability that at a given time there are n packets in the 
system. On the vertical axis the probability is shown for a given number of packets on the horizontal 
axis. 
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Figure 2-8: Job Distribution from simulation 

The numerical data for this graph is also available in OMNeT. It is now possible to compare the 
results from the simulation with the theoretic probabilities. 
 
The probability of n packets in the system is given by [5]: 
 

∞=−= ,.....,1,0,)1( nP n
n ρρ  

 
This results in the following image: 
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Figure 2-9: Job Distribution: simulation and theory compared 

The results from the simulation were acquired by taking the average of the 50 runs. Although no 
confidence interval is given for the simulation results, it is clear that both bars are as good as equal. 
So, in this case, the simulation results comply with the theory. 
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3 TCP/IP 
 
3.1 Introduction 
 
The first outline for the Transfer Control Protocol (TCP) was given in 1974, by Bob Kahn and Vinton 
Cerf. They continued working on it during the 1970’s, while the ARPAnet, a network developed in the 
United States intended to link research facilities, was starting to grow. This ARPAnet first used the 
Network Control Protocol (NCP) to operate the network, but in 1983 it was replaced by TCP in 
combination with the Internet Protocol (IP). The latter took care of the routing of messages in the 
network. This ARPAnet started to grow and also became available to home users, and soon the public 
part of this network was called the ‘Internet’. The popularity of the Internet also contributed to the 
popularity of TCP/IP, which is one of the most used network protocols nowadays.  
 
The TCP/IP protocol suite consists of four layers: 
 
The first layer, the application layer, consists of applications that make use of the 
TCP/IP protocol stack, like FTP, telnet and web services (HTTP). The TCP 
protocol, which supports reliable data transport, is positioned in the transport 
layer. The UDP-protocol is also part of this layer. The network layer takes care 
of routing packets through the network. IP can be found in this 
layer, together with ICMP. The bottom Link layer consists of 
the physical network interface 
 
The focus of this report will be on TCP, located in the transport layer. 
 
3.2 TCP 
 
3.2.1 Internals 
 
The Transmission Control Protocol supports reliable, connection-oriented data transfer between 
applications. It works on top of IP, which is an unreliable transport service. TCP uses a 20 bytes 
header (plus optional options) to manage connection setup, connection termination and data transfer. 
The layout of this header is shown in Figure 3-2. This header information is added to data that the 
application using TCP wants to send. But first, this data is divided into segments, each with its own 
header information. This data is then reassembled at the receiving side. Al these segments are passed 
to the IP-layer, where another 20 bytes of header is added to the packet.  
 

 
Figure 3-2: TCP header fields 

 
TCP provides a reliable service. To realize this, several techniques are used to make sure that all data 
arrives in the end, and that TCP makes optimal use of the underlying network resources. 

Application 
Transport 
Network 

Link 

Figure 3-1: TCP/IP protocol suite layers 
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TCP makes use of the sliding window protocol. Each packet that is sent with TCP has a sequence 
number. The receiving side acknowledges every packet. Using the sliding window protocol, it is 
possible to send a variable number of packets before they are acknowledged.  
 
TCP also uses advanced flow and congestion control. In order to use the link between two hosts to its 
full capacity, but not send more data then the network or the other host can handle, advanced flow and 
congestion control mechanisms are used. To do this, both sender and receiver have two ‘windows’: the 
receive and send window. The receive window is the amount of data the receiver can receive. This 
value becomes smaller when for example the buffer of the receiver is not emptied by the application 
yet. This value is sent in the ‘Window’ field of the TCP header. The sender keeps track of its own send 
window, called the ‘congestion window’. The amount of data a sender can send is limited by the size 
of the receive window of the other host, and the amount of the data the network can handle (the 
congestion window).  
 
The initial value of the congestion window is set to one segment. For every acknowledgement that is 
received, this window grows with one segment. So the sender starts with sending one segment. When 
an ACK is received for this segment, the congestion window grows to two segments. Two segments 
are sent then. When acknowledgements are received for these packets, the congestion window grows 
to four segments. This window grows thus exponential. This algorithm is called slow start. 
 
When a packet is lost, indicated by an expiring retransmission timer or by receiving three duplicate 
acknowledgments, this congestion window is set to one segment (congestion avoidance) or half the 
congestion window plus three segments (fast recovery). This is further explained below. 
 
3.2.2 Versions 
 
The first version of TCP is described in RFC 793 [6] from 1981. In this specification, the basic 
protocol elements were specified, such as the sliding window algorithm, header format and a 
retransmission timer, which resends packets after no acknowledgements are received for a packet after 
some time. Shortly after this first specification several addition to TCP where published. The ‘delayed 
acknowledgement’ feature was introduced to limit the overhead of sending acknowledgments for 
every received packet [7]. When a receiver uses this technique, an acknowledgment does not have to 
be sent for every packet that is received. There are several circumstances in which an ACK has to be 
sent immediately [8]. In other cases, a timer is set and when it expires an ACK is sent nevertheless.  
 
In the past 20 years, several other improvements have been made to the original specification:  
 
A newer version, called TCP Tahoe, supports the fast retransmit [9] algorithm. This algorithm comes 
into play when the sending side receives four acknowledgements that acknowledge the same packet 
(three duplicate acknowledgement). When an acknowledgment is sent by the receiver, the 
‘acknowledgment number’ field indicates the sequence number of the packet it wishes to receive next. 
If after that it receives a packet with a sequence number that is not the same as the sequence number 
asked for, it just sends the acknowledgment for this sequence number again. This indicates that 
somewhere a packet with a sequence number in between is delayed or lost. When a sender has 
received three duplicate acknowledgments for a packet with sequence number X, it just resends this 
packet. Also, it adjusts its value for the congestion window to one packet. When other ACK packets 
are received, this value grows exponentially to a certain threshold (half of the congestion window), 
and after that it again grows linearly (congestion avoidance).  
 
After that TCP Reno was introduced. TCP Reno added fast recovery [10] to the fast retransmit 
algorithm. When three duplicate ACKs are received, the congestion window is cut in half, rather than 
setting it back to one packet. This value is saved in the variable ssthresh. For all other duplicate ACK 
packets that are received the congestion window grows exponential. When a new ACK is received 
(not duplicate), the congestion window is set back to the value of ssthresh and after that is grows 
linear.  
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TCP NewReno is the same as TCP Reno, but resends more than one packet after three duplicate ACKs 
are received. 
 
TCP Sack is another additional feature that improves performance under heavy congestion with 
multiple packet losses. TCP Vegas has several other improvements, but only performs better in 
homogenous settings, and worse when working with for example TCP Reno, the most used TCP 
version nowadays. 
 
3.3 Areas of interest 
 
TCP was designed to support maximum throughput over many kinds of different networks. Many 
improvements that have been done over the past years were targeted at improving this throughput. 
With a simulator, it is quite easy to determine the throughput with different version of the TCP 
protocol stack. It is also possible to change other factors in the simulator, like line speed and delay. 
TCP should work in many different setups. One of those setups is with an asymmetric connection. In 
this setup, the downstream channel is much faster than the upstream channel. Using a simulator, it is 
possible to show how TCP reacts under these circumstances.  
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4 TCP/IP-implementation in OMNeT++ 
 
4.1 Existing implementation 
 
The Internet Protocol Suite (IPSuite) [11] provides IPv4, TCP and UDP models for simulations in 
OMNeT++. It was first developed by several people at the University of Karlsruhe [12]. In the end of 
2003, the author of OMNeT++, Andras Varga, took over the maintenance of the IPSuite package. He 
also created more documentation for the package, which makes it easier to use and make adjustments 
to the model. At the same time, a model for IPv6 was also created [13]. 
 
The whole IPSuite model is modular. All the components of a real life TCP setup are divided into a 
large number of different modules. Each module can have several parameters. In Figure 4-1, a 
simplified model of the complete TCP model is given. The complete model can be found in [14]. All 
these different modules are defined in the .ned files, as explained in paragraph 2.1.2. The complete 
TCP finite state machine is implemented by these modules. 
 

Figure 4-1: TCP model in OMNeT++ 

 
The top module is ‘AsymClientServer Network’. This module models a simple client-server network, 
in which the upload and download bandwidth can be set separately (asymmetric bandwidth). This 
network consists of a single client (TCPClientNode) and a server (TCPServerNode), which are more 
specific instances of the general IPNode module. The simple switch connects these two nodes. All this 
switch does is send packets to the other host, and drop packets on the downstream link (from server to 
client) with a given probability (module parameter).  
 
The two TCP nodes both have four sub modules. The ErrorHandling module takes care of error 
notifications that come from other protocol modules. These messages are printed and then discarded. 
The ProcessorManager simulates the processor usage of a TCP node. Using this node it is possible to 
set a processor delay for every IP-packet that has to be processed. The NetworkLayers module models 
the network and lower layers. The NetworkInterface module simulates the actual network interfaces, 
and routing is done in the RoutingTable module. There are also two modules for in and output 
queueing. The OutputQueue module has more sub modules, but they are not shown here. 
 

ErrorHandling

NetworkLayers 

ProcessorManager

TcpIpInterface

Tcp2Ip Ip2Tcp

InputQueue 

RoutingTableNetworkInterface 

Simple Switch 

AsymClientServer Network

TCPServerNode TCPClientNode

OutputQueue

TcpModule TCPApp

TCPUpperLayers 
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The real TCP stack can be found in the TCPUpperLayers module and its sub modules. The application 
that makes use of TCP is modelled in TCPApp.  In TcpIpInterface and its sub modules the transfer of 
TCP packets to the IP layer (Tcp2Ip) and IP packets to the TCP layer (Ip2Tcp) takes place. The 
concrete implementation of the TCP protocol can be found in TcpModule. All the aspects of TCP, like 
retransmit timers and the sliding window algorithm, are all implemented in this single module.  
 
All basic aspects of the first TCP version are implemented in this module. It is possible to turn several 
features on or off. These features are delayed acknowledgements, fast retransmit, fast recovery. With 
all these features turned on, the TCP implementation acts as a TCP Reno implementation. It is also 
possible to use the TCP NewReno implementation.  
  
4.2 Changes 
 
All changes made to the IPSuite were done in the TcpModule, where the TCP implementation is 
located. While trying to use the TCP model for several simulations, several faults in the existing TCP 
implementation showed up. Several features did not work as expected, and some aspects just were not 
implemented. In the rest of this chapter the changes to the TCP model will be shown. 
 
4.2.1 Tcpdump output 
 
The existing TCP module could produce a lot of debugging information, about transitions in the TCP 
FSM and the different values in the transmission control block (TCB), which is used to store 
connection information, but this information was not useful when trying to find errors in the TCP 
implementation. In [15], the output of the Unix program called ‘tcpdump’ is used to show how TCP 
works.  
 
Since the TCP model in OMNeT++ is a full TCP implementation, it was also possible to make the 
model output its debug information in the same format as the ‘tcpdump’ program. An example of this 
is shown in Figure 4-2. In this example, the tcpdump output for a server is shown (address 
167772161), to which a client (167772162) connects. The server then sends 4580 bytes of data and the 
client then terminates the connection. 
 
The first field is the line number. Then the IP address in decimal notation of the sending host (with 
port number, 0 in this case) is shown, followed by the receiving host and port. Then, several flags in 
the TCP header are shown, if set. These are stored in the ‘code bit’ field in the TCP header in Figure 
3-2. For some transfers, the initial sequence number for the packet is shown, together with the implied 
ending sequence number, depending on the number of data bytes in the packet. If the ACK flag is set, 
‘ack’ together with the sequence number that is acknowledged is printed. After that, win <number> 
indicates the size of the receive window being advertised by the sender. Since the sender receives no 
data, this window stays the same all the time. Finally, on the first two lines, options of the connection 
that are negotiated during the connection setup are shown between <>.  
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1  167772162.0 > 167772161.0 S 0:0(0) win 65535 <mss 1460> 
2  167772161.0 > 167772162.0 S 10695:10696(1) ack 1 win 65535 <mss 1460> 
3  167772162.0 > 167772161.0 . 1:2(1) ack 10696 win 65535 
4  167772161.0 > 167772162.0 . 10696:12156(1460) ack 1 win 65535 
5  167772162.0 > 167772161.0 . ack 12156 win 65535 
6  167772161.0 > 167772162.0 . 12156:13616(1460) ack 1 win 65535 
7  167772161.0 > 167772162.0 . 13616:15076(1460) ack 1 win 65535 
8  167772162.0 > 167772161.0 . ack 13616 win 65535 
9  167772161.0 > 167772162.0 P 15076:15276(200) ack 1 win 65535 
10 167772162.0 > 167772161.0 . ack 15076 win 65535 
11 167772162.0 > 167772161.0 . ack 15276 win 65535 
12 167772162.0 > 167772161.0 F 1:1(0) ack 15276 win 65535 
13 167772161.0 > 167772162.0 . ack 2 win 65535 
14 167772161.0 > 167772162.0 F 15276:15277(1) ack 2 win 65535 
15 167772162.0 > 167772161.0 . 2:3(1) ack 15277 win 65535 

Figure 4-2: Tcpdump output from simulation 

In lines 1, 2 and 3, the connection setup is shown. The client sends a SYN segment to the server, with 
an initial sequence number (ISN), which is 0. The server responds to this with another SYN segments, 
with its own ISN, and includes an ACK in that segment for the received SYN. Finally, the client sends 
an ACK for the SYN segment the server sent. The connection is now established. In the next lines, the 
server sends data in packets of 1460 bytes. Delayed acknowledgments are turned off here, so an 
acknowledgement is sent for every packet. The last data is sent together with the P (push) flag turned 
on. The client then terminates the connection. This connection termination takes 4 packets (lines 12-
15).  
 
4.2.2 Delayed Acknowledgements 
 
There were some problems with the TCP implementation when the delayed acknowledgement feature 
was turned on.  
 
TCP does normally not send an ACK immediately to acknowledge received data. Instead, it makes use 
of delayed acknowledgements. This comes from the fact that TCP just waits for data to send to which 
the acknowledgement can be attached (the so called piggybacking). When this does not happen for 
some time, a timer goes off and the ACK is sent eventually. An ACK is sent immediately when an out 
of sequence packet (a packet that has a different sequence number then expected) is received. There is 
another mechanism that triggers the immediate sending of an ACK. When there are two outstanding 
(not acknowledged packets), TCP sends an ACK immediately. So, when two consecutive packets are 
received, an ACK is sent after that. 
 
The timer that scheduled the transmission of the delayed ACK packets was implemented correctly, but 
the mechanism that sends an ACK when two not yet acknowledged consecutive packets were received 
was not present. I’ve added this to the TCP module, by using a counter that increments for every 
packet that is received for which no immediate ACK is sent. When this counter is equal to 2, an 
immediate ACK is sent. This counter is reset when the delayed ACK timer goes off, or an immediate 
ACK is sent for another reason.  
 
There is another reason to send an immediate ACK. A TCP node sends duplicate ACK packets when a 
certain packet is lost. When this packet that is asked for is received eventually, an immediate ACK 
should be sent to get the data transfer going again. I’ve implemented this by registering the sequence 
number for which three duplicate ACKs are sent at the sender side. When this packet is eventually 
received, an immediate ACK is sent. 
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4.2.3 Persist Timer 
 
The persist timer mechanism was not present in the TCP implementation. TCP normally performs 
flow control by letting the receiver specify the amount of data it is willing to receive (the window 
size). When this window is equal to 0, the sender stops sending, but eventually, the sending process 
should start again. If the receiver sends an ACK with a window size greater than zero, the sender 
should start sending again. But, if this ACK is lost, the receiver waits for data, but the sender still 
thinks the receiver’s window is zero. This is a deadlock situation. 
 
The persist timer solves this. This timer is set when the other node advertises a window size of 0. The 
timeout period is calculated using the normal TCP exponential backoff, which is about 1.5 seconds for 
a typical LAN for the first timeout. This value multiplied by 2 for the second timeout, by 4 for the 
third, etcetera, but is always bounded between 5 and 60 seconds. When this timer expires, 1 byte of 
data is sent. The receiver responds to this by sending an ACK, either with 0 or greater window size. 
 
This additional timer is implemented the same way the other timers are implemented in the model (i.e. 
the retransmit timer). The exponential backoff mechanism isn’t used yet; the timer has a fixed value.  
 
4.3 Further improvements 
 
Despite the changes described above, there are still some errors left in the TCP implementation. The 
results from the simulations in the next chapter will show this. It was not possible to find and fix all 
the errors during this assignment.  
 
Also, the exponential backoff of the persist timer has to be implemented. Also, new variants of TCP 
like TCP Sack could be implemented.  
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5 Analysis of  TCP/IP in OMNeT++ 
 
5.1 TCP Friendly 
 
5.1.1 TCP Friendly formula 
 
TCP uses the Congestion Avoidance algorithm to estimate the amount of bandwidth available between 
two Internet hosts. This algorithm was added to the first version of TCP [6]. This algorithm slowly 
increases the congestion window, whenever an acknowledgement is received from the other end of the 
connection. When a loss is suffered (this indicates a congestion), this window is decreased by half.  
 
It is possible to derive an equation for the available bandwidth between two hosts when you know all 
the aspects of this algorithm [16].  
 

LossRTT
MTUBandwidth

*
*22.1

=  

 
In which MTU is the packet size used (in bytes), RTT the round trip time in seconds and Loss is the 
loss rate on the downstream of the connection. Bandwidth is then given in bytes per second. 
 
This formula has been verified by simulations for loss rates up to 5% [17]. At high loss rates the 
formula overestimates the bandwidth. In the next paragraph this formula will be held against results 
from the simulation. 
 
5.1.2 Simulation Setup 
 
The following simple network set up was used to verify the TCP friendly formula in the simulation: 
 
   

Figure 5-1: Layout simulated network 

 
The sender sends an amount of data to the receiver. The RTT (round trip time) is fixed (0.06s = 60ms). 
The element between the sender and receiver drops packages randomly on the downstream link (from 
sender to receiver). 
 
There are a lot of different TCP versions and each version has several distinct features which can be 
turned on or off in the simulation. In this simulation TCP Reno was used. This is the standard TCP 
protocol with several additional features. These features are slow start, congestion avoidance, fast 
retransmit (all included in TCP Tahoe) and fast recovery. The delayed acknowledgment feature was 
turned off. 
 
For each amount of packet loss, ten simulations were run, each with a different random seed. The 
amount of packet loss was increased by 0.1% each run. The amount of data sent by the sender was 
equal in every simulation (1000000000 bits, approximately 120 megabytes). This should be enough to 
get reliable results. The throughput was calculated by dividing the amount of data sent by the time that 
passed between the opening of a TCP connection by the client and the closing of this connection. It 
also takes some time to set up and tear down the connection, and no data is sent then, but this is 
negligible.  

 
 

 
 

 
 

Sender  Receiver
 Switch 
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The link bandwidth was set to 1 gigabit per second. This bandwidth is much larger then the theoretic 
maximum throughput, but this is just to be sure the available link bandwidth isn’t the bottleneck. The 
receive window was set to maximum, 65535 bytes (64 KB). So in one round trip time period (60 ms), 

a maximum of 64 KB can be sent. This comes down to 67,1066
60

1000*64 = KB per second. This is 

the maximum throughput, as limited by the receive window, but other factors can be the bottleneck 
too. 
 
5.1.3 Results 

Figure 5-2: Throughput results from simulation 

 
The black lines, marked with squares, indicate the measured throughput, as acquired from the 
simulation. Next to each black line there is a slim brighter line that indicate the expected throughput as 
calculated with the TCP-Friendly formula. The upper pair of lines displays the throughput with a large 
maximum segment size (MSS) with 1460 bytes per packet. With the lower pair of lines a small packet 
size of 536 bytes was used. 
 
The vertical lines that accompany the simulation results indicate the 95% confidence interval. The 
calculation of this is explained in paragraph 2.2.2. The meaning of this interval is that there is a 95% 
probability that in a real situation on the Internet, with the same link parameters as were used here, the 
average throughput will be between the possible values indicated by the confidence interval as 
indicated in Figure 5-2. This interval is larger for the smaller packet size when the packet loss exceeds 
1.1 percent. This is because the amount of samples (successful simulations) is less there. This expands 
the interval. The confidence interval is almost 0 when there is no packet loss. Since no packet loss 
occurs, the throughput found is the same in all simulation runs. This results in a very small (close to 0) 
confidence interval. 

 
The simulation results differ from the formula when the loss rate is greater than 1,5 percent. This 
difference can probably be attributed to the not fully correct implementation of the error handling 
mechanism.  
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The first simulation outcomes showed a large gap between the formula and the simulation with low 
loss rates when using the large MSS. The cause of this seemed to be the limitation of the receiver 
window by the TCP implementation. The maximum window size was set to 64 KB, but there was a 
variable called rcv_buf_usage_thresh in the tcpmodule that somehow limited the maximum 
receive buffer usage at only 50%. Setting this threshold to 100% did not lead to the expected 
throughput, but doubling the maximum receive window size to 128 KB did. In normal TCP, it is not 
possible to advertise a window greater than 64 KB, since there are only 16 bits available for this in the 
header. It is however possible to use the window scale option [18], but this is not implemented in the 
OMNeT++ TCP model. Fortunately, a TCP header in the simulation is just a struct, in which the 
receive window variable is of the type long, which is 32 bits. So it is possible to use a receive window 
greater then 64 KB. From zero to 0.5% packet loss this larger receive window was used, with the 
larger packet size (1460 bytes).  
 
5.1.4 Implications 
 
The graph in paragraph 5.1.3 only shows packets loss from zero to two percent. The simulation was 
also run for packet loss up to five percent. The higher the packet loss, the smaller the amount of 
successful simulations was. Because of the not fully working TCP implementation, the simulation 
with higher packet loss rates just stopped (i.e. there weren’t any packets sent/received) after a certain 
amount of time. Because of this, the results from the simulations that ran successful weren’t very 
reliable, because of the small amount of data. It is presumable that only the simulation with the ‘lower 
than average’ packet loss percentage succeeded, so this would also contribute to the unreliability of the 
data.  
 
The gap between the results and the formula was really large with high loss rates. The throughput from 
the formula was about two times as high as the throughput from the simulation. It is known that the 
formula overestimates the throughput for higher loss rates, but this should only be true for loss rates 
higher then 5 percent. So this is clearly an error caused by the incorrect implementation of TCP in 
OMNeT++. But, between zero and two percent packet loss, the simulation is working according to the 
formula. 
 
5.2 Asymmetric connection 
 
5.2.1 TCP and asymmetric connections 
 
A lot of today’s Internet connections that home users have are in one or more ways asymmetric. These 
connections can be asymmetric by available bandwidth, loss rate or access time. The most frequently 
used is the asymmetry by bandwidth. Examples of this are asymmetric digital subscriber line (ADSL) 
technology and cable modems. The download/upload ratio can be as large as 25:1. This means that the 
downstream bandwidth can be 25 times as large as the available upstream bandwidth. 
 
The execution of TCP is affected by this asymmetry, for example during unidirectional data transfer. 
Especially when there are losses on the downstream link, the overall throughput suffers from this 
asymmetry [19]. TCP uses acknowledgments to establish a reliable connection. When these 
acknowledgments can’t be sent fast enough, the sender will not be able to use the full bandwidth of the 
downstream link. 
 
With asymmetric connections, you can define a normalized bandwidth ratio [20], k. This is the ratio 
between the down- and upstream bandwidth, divided by the packet size ratio used in both directions. 
So, let’s calculate this ratio when the downstream bandwidth is 10Mbit/s and the upstream bandwidth 
is 28,8kbit/s. The packets on the downstream path are 1460 bytes and the acknowledgment-packets on 
the upstream-channel are 40 bytes (20 bytes IP-header, 20 bytes TCP-header and no data). We will use 
these values to simulate a connection in the following paragraphs.  
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Figure 5-3: Normalized bandwith calculation 

 
In Figure 5-3 the normalized bandwidth ratio is calculated. The proportion of the down and upstream 
bandwidth is divided by the proportion of the packet sizes. In our case, k equals 9,5. This means, that 
if the receiver sends more then one ACK every 9,5 data packets it has received, the upstream link will 
be full before the downstream channel is used to it is full capacity. If this continues for some time, the 
send buffer at the receiving side will get full (with ACK packets) and packets from this queue will be 
dropped. It will then take even more time before the downstream bandwidth is fully used, because the 
sender’s congestion window is increased only each time an ACK is received.  
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5.2.2 Test results: Throughput 
 
Several test with a asymmetric connection were done using the TCP-model in OMNeT++. 
Downstream bandwidth was set to 10Mbit/s and upstream bandwidth to 28.8kbit/s. The propagation 
delay for both channels was set to 0.03 seconds (30 ms). Pcakets were dropped on the downstream 
link. As in the previous simulation, 1000000000 bits (approximately 120 megabytes) were sent from 
sender to receiver via the downstream link. The receiving side did only send ACK-packets, and no 
other data besides that. 
 
Two different packet sizes were used: 536 and 1460 bytes. There were four different test runs, two for 
each packet size, one with delayed acknowledgment turned off, and one with this feature turned on. 
TCP Reno was used for all test runs. 

Figure 5-4: Throughput Asymmetric connection 
 
There is a big difference in speed between the two packet sizes. Since the growth of the congestion 
window is limited, only a limited amount of packets can be sent. The larger the amount of data per 
packet is, the higher the throughput. The throughput is also larger when delayed acknowledgments are 
used, because only half the amount of ACK-packets is sent. The upstream channel is only half as 
much congested, so the congestion window can grow faster. But the most important reason for the 
lower throughput is the fact that when the maximum amount of packets (size of congestion window) is 
outstanding (not acknowledged yet), no other data can be sent until an acknowledgement arrives. So if 
the congestion window has grown to it is maximum, it is still no guarantee for a higher throughput. 
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5.2.3 Test results: Congestion window 

Figure 5-5: Average congestion window asymmetric connection 

The graph above shows the average congestion window, as recorded at the sender. Recall, that the 
senders congestion window increases for every acknowledgement that is received. The window 
becomes smaller when a loss is suffered. So, when there is no packet loss at all, this window can grow 
unlimited. This is shown in the graph by the high peak at zero percent packet loss.  
 
5.2.4 Test results: Miscellaneous  
 
All the previous graphs were made by collecting data from the OMNeT++ simulation ‘by hand’, after 
the simulation was finished. It is also possible to let OMNeT++ record data during the simulation. 
This data is then stored in so called output vectors. In these vectors, a timestamp is stored together 
with data from that time. You can use multidimensional vectors, storing multiple data fields at the 
same moment.  
 
These output vectors can be visualised by a tool called Plove, which is included in the OMNeT++ 
distribution. This tool uses Gnuplot [21] to plot the recorded data.  
 
In Figure 5-5, the average congestion window was shown. It is also possible to show this window at 
certain point in time. The congestion window was recorded into an output vector, and visualized using 
Plove. The results of this can be seen in Figure 5-6. 
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Figure 5-6: Congestion window in time 

The graph shows the value of the congestion window, set out to the time the simulation is running. 
Only a small part of the whole simulation run is shown here. What we see here is the congestion 
window of a TCP sender. Data that this sender sends is lost at some point. The receiver responds to 
this by sending three duplicate acknowledgments. This is marked by 1 in the figure. The receiver 
responds to this by setting the slow start threshold (ssthresh) to half the current congestion window 
size. The congestion window is set to this threshold plus three segments (2). What happens then is that 
for every duplicate ACK that the sender receives next, the congestion window grows one segment 
(same as in slow start, exponential growth). This causes the steep line between 2 and 3. When a new 
ACK is received, the congestion window is set to the value of ssthresh (4). The congestion window 
then grows again linear, as with congestion avoidance.  
 
5.2.5 Implications 
 
The results presented in the previous paragraph show several significant aspects of TCP, when used on 
an asymmetric connection. When you compare the throughputs in Figure 5-2 and Figure 5-4, you 
immediately see that TCP suffers from the small upload link capacity. The download/upload 
bandwidth ratio is chosen very large here, so even with no packet loss the download link capacity isn’t 
fully used.  
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6 Conclusion 
 
The goal of this assignment was to get to know the OMNeT++ simulator environment, by 
experimenting with different models. This was done using the M/M/1 queue simulation first, and after 
that the IP Suite, which holds models for IP and TCP, was thoroughly investigated.  
 
The TCP/IP model in OMNeT++ proved to be working, but not free of errors. Some features were 
missing, and some were not correctly implemented. All TCP behavior was coded into one single 
module (tcpmodule), which made it hard to understand and change this implementation. Fur future 
version, it might be possible to split TCP functionality into several modules. 
 
Several improvements were made to the TCP implementation. These improvements are also adopted 
by the maintainers of the IPSuite package and are available in the latest version. Considering the 
current status of the model, and the ongoing development to the IP Suite package, it is valid to 
conclude that the IP Suite package is useful for simulation and exploring basic TCP/IP behavior.  
 
OMNeT++ was the main subject of this assignment. Because two simulations were looked into, it was 
possible to get a good impression of the program. The separation of the description of the network 
layout and the actual implementation of the nodes of this network is a positive point of the program. 
The description of the network is done in the simple structured NED language and for the 
implementation of the nodes the C++ libraries provides all the flexibility and functionality needed. 
The graphical interface is very useful for showing the network layout and the exchange of messages in 
the network. For simulation development purposes however it is not often used.  
 
So, is OMNeT++ a useful simulator? Yes, and maybe no. It has got a lot of useful functions and a lot 
of people are contributing to the open source packet. But not everyone is going to build his or her 
simulation from scratch. They want to use existing 100% working models to build their simulation on. 
There are already a number of models present for OMNeT++, for example the IPv6Suite and models 
for 802.11. If this list of models keeps growing, OMNeT++ can become even more successful.  
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